O Guia de cientistas e engenheiros para processamento de sinal digital Por Steven W. Smith, Ph. D. Capítulo 19: Filtros recursivos Existem três tipos de resposta de fase que um filtro pode ter: fase zero. Fase linear. E fase não linear. Um exemplo de cada um destes é mostrado na Figura 19-7. Conforme mostrado em (a), o filtro de fase zero é caracterizado por uma resposta de impulso que é simétrica em torno da amostra zero. A forma real não importa, apenas que as amostras numeradas negativas são uma imagem espelhada das amostras numeradas positivas. Quando a transformada de Fourier é tomada dessa forma de onda simétrica, a fase será inteiramente zero, como mostrado em (b). A desvantagem do filtro de fase zero é que requer o uso de índices negativos, o que pode ser inconveniente para trabalhar. O filtro de fase linear é uma maneira de contornar isso. A resposta de impulso em (d) é idêntica à mostrada em (a), exceto que foi transferida para usar apenas amostras numeradas positivas. A resposta ao impulso ainda é simétrica entre a esquerda e a direita no entanto, a localização da simetria foi deslocada de zero. Esta mudança resulta na fase, (e), sendo uma linha reta. Contabilizando o nome: fase linear. A inclinação desta linha reta é diretamente proporcional à quantidade da mudança. Uma vez que a mudança na resposta ao impulso nada mais que produzir uma mudança idêntica no sinal de saída, o filtro de fase linear é equivalente ao filtro de fase zero para a maioria dos propósitos. A figura (g) mostra uma resposta de impulso que não é simétrica entre a esquerda e a direita. Correspondentemente, a fase, (h), não é uma linha reta. Em outras palavras, ele tem uma fase não-linear. Não confunda os termos: fase não linear e linear com o conceito de linearidade do sistema discutido no Capítulo 5. Embora ambos usem a palavra linear. Eles não estão relacionados. Por que alguém se importa se a fase for linear ou não Figuras (c), (f), e (i) mostre a resposta. Estas são as respostas de pulso de cada um dos três filtros. A resposta ao pulso não passa de uma resposta passo a passo positiva seguida de uma resposta passo a passo negativa. A resposta de pulso é usada aqui porque exibe o que acontece tanto nas bordas ascendentes como descendentes em um sinal. Aqui está a parte importante: os filtros de fase zero e linear têm bordas esquerda e direita que se parecem iguais. Enquanto filtros de fase não-linear têm bordas esquerda e direita que se parecem diferentes. Muitas aplicações não podem tolerar as bordas esquerda e direita, aparecendo diferentes. Um exemplo é a exibição de um osciloscópio, onde essa diferença pode ser mal interpretada como uma característica do sinal que está sendo medido. Outro exemplo é o processamento de vídeo. Você pode imaginar ligar a sua TV para encontrar a orelha esquerda do seu ator favorito diferente da orelha direita. É fácil fazer um filtro FIR (filtro de resposta finito) com uma fase linear. Isso ocorre porque a resposta de impulso (kernel de filtro) é especificada diretamente no processo de design. Fazer o kernel do filtro ter simetria esquerda-direita é tudo o que é necessário. Este não é o caso dos filtros IIR (recursivos), uma vez que os coeficientes de recursão são o que é especificado, e não a resposta ao impulso. A resposta de impulso de um filtro recursivo não é simétrica entre a esquerda e a direita e, portanto, tem uma fase não-linear. Circuitos eletrônicos analógicos têm esse mesmo problema com a resposta de fase. Imagine um circuito composto por resistores e capacitores que estão sentados em sua mesa. Se a entrada sempre foi zero, a saída também sempre foi zero. Quando um impulso é aplicado à entrada, os capacitores carregam rapidamente para algum valor e começam a diminuir exponencialmente através dos resistores. A resposta ao impulso (isto é, o sinal de saída) é uma combinação destes vários exponenciais exponentes de decomposição. A resposta ao impulso não pode ser simétrica, porque a saída foi zero antes do impulso, e a decomposição exponencial nunca atingiu novamente o valor zero. Os criadores de filtros analógicos atacam esse problema com o filtro Bessel. Apresentado no Capítulo 3. O filtro Bessel foi concebido para ter a fase linear possível, no entanto, está muito abaixo do desempenho dos filtros digitais. A capacidade de fornecer uma fase linear exata é uma clara vantagem dos filtros digitais. Felizmente, existe uma maneira simples de modificar filtros recursivos para obter uma fase zero. A Figura 19-8 mostra um exemplo de como isso funciona. O sinal de entrada a ser filtrado é mostrado em (a). A figura (b) mostra o sinal depois de ter sido filtrada por um filtro passa-baixa de um único pólo. Uma vez que este é um filtro de fase não linear, as bordas esquerda e direita não parecem iguais são versões invertidas entre si. Conforme descrito anteriormente, este filtro recursivo é implementado começando na amostra 0 e trabalhando em direção à amostra 150, calculando cada amostra ao longo do caminho. Agora, suponha que ao invés de se mover da amostra 0 para a amostra 150, começamos na amostra 150 e avançamos em direção à amostra 0. Em outras palavras, cada amostra no sinal de saída é calculada a partir de amostras de entrada e saída à direita da amostra trabalhada em. Isso significa que a equação de recursão, Eq. 19-1, é alterado para: Figura (c) mostra o resultado dessa filtragem inversa. Isso é análogo ao passar um sinal analógico através de um circuito RC eletrônico enquanto o tempo de execução está para trás. Esrevinu eht pu-wercs nac lasrever emite - noituaC O filtro na direção inversa não produz nenhum benefício em si mesmo, o sinal filtrado ainda possui bordas esquerda e direita que não se parecem. A magia acontece quando a filtragem direta e reversa são combinadas. A Figura (d) resulta da filtragem do sinal na direção direta e, em seguida, filtra-se novamente na direção inversa. Voila Isso produz um filtro recursivo de fase zero. Na verdade, qualquer filtro recursivo pode ser convertido em fase zero com esta técnica de filtragem bidirecional. A única penalidade para este desempenho melhorado é um fator de dois em tempo de execução e complexidade do programa. Como você encontra as respostas de impulso e freqüência do filtro geral A magnitude da resposta de freqüência é a mesma para cada direção, enquanto as fases são opostas no sinal. Quando as duas direções são combinadas, a magnitude fica quadrada. Enquanto a fase cancela para zero. No domínio do tempo, isso corresponde a convolver a resposta de impulso original com uma versão invertida para a esquerda para a direita. Por exemplo, a resposta de impulso de um filtro passa-baixa de um único pólo é um exponencial unilateral. A resposta ao impulso do filtro bidirecional correspondente é uma exponencial unilateral que se decompõe para a direita, convolvida com uma exponencial unilateral que decaia para a esquerda. Passando pela matemática, isso resulta ser um exponencial de dupla face que decaia tanto para a esquerda quanto para a direita, com a mesma constante de decaimento que o filtro original. Algumas aplicações possuem apenas uma parte do sinal no computador em um momento específico, como sistemas que alternadamente insere e exibem dados de forma contínua. A filtragem bidirecional pode ser usada nesses casos, combinando-o com o método de sobreposição adicionado descrito no último capítulo. Quando você vem à questão de quanto tempo a resposta de impulso é, não diga infinito. Se você fizer isso, você precisará preencher cada segmento de sinal com um número infinito de zeros. Lembre-se, a resposta ao impulso pode ser truncada quando decaído abaixo do nível de ruído de arredondamento, isto é, cerca de 15 a 20 constantes de tempo. Cada segmento precisará ser preenchido com zeros à esquerda e à direita para permitir a expansão durante a filtragem bidirecional. Resposta de freqüência do Filtro médio de corrida A resposta de freqüência de um sistema LTI é o DTFT da resposta de impulso, a resposta de impulso De uma média móvel em L é uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita. Podemos usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados na magnitude desta função, a fim de determinar quais freqüências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro não atenuado. Certas freqüências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. A trama acima foi criada pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-maome16)). (1-exp (-maomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, Berkeley
 
No comments:
Post a Comment